Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Sci Rep ; 12(1): 17141, 2022 Oct 13.
Article in English | MEDLINE | ID: covidwho-2062261

ABSTRACT

'Tripartite network' (TN) and 'combined gene network' (CGN) were constructed and their hub-bottleneck and driver nodes (44 genes) were evaluated as 'target genes' (TG) to identify 21 'candidate genes' (CG) and their relationship with neurological manifestations of COVID-19. TN was developed using neurological symptoms of COVID-19 found in literature. Under query genes (TG of TN), co-expressed genes were identified using pair-wise mutual information to genes available in RNA-Seq autopsy data of frontal cortex of COVID-19 victims. CGN was constructed with genes selected from TN and co-expressed in COVID-19. TG and their connecting genes of respective networks underwent functional analyses through findings of their enrichment terms and pair-wise 'semantic similarity scores' (SSS). A new integrated 'weighted harmonic mean score' was formulated assimilating values of SSS and STRING-based 'combined score' of the selected TG-pairs, which provided CG-pairs with properties of CGs as co-expressed and 'indispensable nodes' in CGN. Finally, six pairs sharing seven 'prevalent CGs' (ADAM10, ADAM17, AKT1, CTNNB1, ESR1, PIK3CA, FGFR1) showed linkages with the phenotypes (a) directly under neurodegeneration, neurodevelopmental diseases, tumour/cancer and cellular signalling, and (b) indirectly through other CGs under behavioural/cognitive and motor dysfunctions. The pathophysiology of 'prevalent CGs' has been discussed to interpret neurological phenotypes of COVID-19.


Subject(s)
COVID-19 , Neoplasms , COVID-19/genetics , Class I Phosphatidylinositol 3-Kinases , Computational Biology , Gene Regulatory Networks , Humans
2.
J Immunol ; 207(7): 1776-1784, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-1497460

ABSTRACT

Acquired neutrophil dysfunction frequently develops during critical illness, independently increasing the risk for intensive care unit-acquired infection. PI3Kδ is implicated in driving neutrophil dysfunction and can potentially be targeted pharmacologically. The aims of this study were to determine whether PI3Kδ inhibition reverses dysfunction in neutrophils from critically ill patients and to describe potential mechanisms. Neutrophils were isolated from blood taken from critically ill patients requiring intubation and mechanical ventilation, renal support, or blood pressure support. In separate validation experiments, neutrophil dysfunction was induced pharmacologically in neutrophils from healthy volunteers. Phagocytosis and bacterial killing assays were performed, and activity of RhoA and protein kinase A (PKA) was assessed. Inhibitors of PI3Kδ, 3-phosphoinositide-dependent protein kinase-1 (PDK1), and PKA were used to determine mechanisms of neutrophil dysfunction. Sixty-six patients were recruited. In the 27 patients (40.9%) with impaired neutrophil function, PI3Kδ inhibition consistently improved function and significantly increased bacterial killing. These findings were validated in neutrophils from healthy volunteers with salbutamol-induced dysfunction and extended to demonstrate that PI3Kδ inhibition restored killing of clinical isolates of nine pathogens commonly associated with intensive care unit-acquired infection. PI3Kδ activation was associated with PDK1 activation, which in turn phosphorylated PKA, which drove phosphorylation and inhibition of the key regulator of neutrophil phagocytosis, RhoA. These data indicate that, in a significant proportion of critically ill patients, PI3Kδ inhibition can improve neutrophil function through PDK1- and PKA-dependent processes, suggesting that therapeutic use of PI3Kδ inhibitors warrants investigation in this setting.


Subject(s)
COVID-19/immunology , Class I Phosphatidylinositol 3-Kinases/metabolism , Critical Illness , Neutrophils/immunology , Pneumonia/immunology , SARS-CoV-2/physiology , Sepsis/immunology , 3-Phosphoinositide-Dependent Protein Kinases/pharmacology , Adult , Aged , Aged, 80 and over , Bacterial Load , Bacteriolysis , Cells, Cultured , Cyclic AMP-Dependent Protein Kinases/metabolism , Female , Humans , Male , Middle Aged , Phagocytosis , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Respiratory Insufficiency , Risk
3.
Front Immunol ; 12: 634181, 2021.
Article in English | MEDLINE | ID: covidwho-1177976

ABSTRACT

Bacterial respiratory tract infections are the hallmark of primary antibody deficiencies (PADs). Because they are also among the most common infections in healthy individuals, PADs are usually overlooked in these patients. Careful evaluation of the history, including frequency, chronicity, and presence of other infections, would help suspect PADs. This review will focus on infections in relatively common PADs, discussing diagnostic challenges, and some management strategies to prevent infections.


Subject(s)
Bacterial Infections/immunology , Immunocompromised Host , Immunoglobulins/deficiency , Primary Immunodeficiency Diseases/immunology , Respiratory Tract Infections/immunology , Agammaglobulinemia/blood , Agammaglobulinemia/immunology , Agammaglobulinemia/therapy , Animals , Bacterial Infections/blood , Bacterial Infections/microbiology , Bacterial Infections/prevention & control , Class I Phosphatidylinositol 3-Kinases/blood , Class I Phosphatidylinositol 3-Kinases/immunology , Common Variable Immunodeficiency/blood , Common Variable Immunodeficiency/immunology , Common Variable Immunodeficiency/therapy , Humans , Immunoglobulins/blood , Primary Immunodeficiency Diseases/blood , Primary Immunodeficiency Diseases/therapy , Prognosis , Respiratory Tract Infections/blood , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/prevention & control , Risk Assessment , Risk Factors
4.
Front Immunol ; 11: 2094, 2020.
Article in English | MEDLINE | ID: covidwho-789288

ABSTRACT

The spread of the novel human respiratory coronavirus (SARS-CoV-2) is a global public health emergency. There is no known successful treatment as of this time, and there is a need for medical options to mitigate this current epidemic. SARS-CoV-2 uses the angiotensin-converting enzyme 2 (ACE2) receptor and is primarily trophic for the lower and upper respiratory tract. A number of current studies on COVID-19 have demonstrated the substantial increase in pro-inflammatory factors in the lungs during infection. The virus is also documented in the central nervous system and, particularly in the brainstem, which plays a key role in respiratory and cardiovascular function. Currently, there are few antiviral approaches, and several alternative drugs are under investigation. Two of these are Idelalisib and Ebastine, already proposed as preventive strategies in airways and allergic diseases. The interesting and evolving potential of phosphoinositide 3-kinase δ (PI3Kδ) inhibitors, together with Ebastine, lies in their ability to suppress the release of pro-inflammatory cytokines, such as IL-1ß, IL-8, IL-6, and TNF-α, by T cells. This may represent an optional therapeutic choice for COVID-19 to reduce inflammatory reactions and mortality, enabling patients to recover faster. This concise communication aims to provide new potential therapeutic targets capable of mitigating and alleviating SARS-CoV-2 pandemic infection.


Subject(s)
Betacoronavirus , Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Coronavirus Infections/drug therapy , Drug Repositioning/methods , Molecular Targeted Therapy/methods , Pneumonia, Viral/drug therapy , Angiotensin-Converting Enzyme 2 , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Antirheumatic Agents/therapeutic use , Antiviral Agents/therapeutic use , Butyrophenones/pharmacology , Butyrophenones/therapeutic use , COVID-19 , Class I Phosphatidylinositol 3-Kinases/metabolism , Coronavirus Infections/virology , Humans , Inflammation/drug therapy , Inflammation/immunology , Interleukin-6/antagonists & inhibitors , Interleukin-6/blood , Pandemics , Peptidyl-Dipeptidase A/metabolism , Piperidines/pharmacology , Piperidines/therapeutic use , Pneumonia, Viral/virology , Purines/pharmacology , Purines/therapeutic use , Quinazolinones/pharmacology , Quinazolinones/therapeutic use , SARS-CoV-2 , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL